Reversal of P-glycoprotein-mediated multidrug resistance in cancer cells by the c-Jun NH2-terminal kinase.

نویسندگان

  • Jun Zhou
  • Min Liu
  • Ritu Aneja
  • Ramesh Chandra
  • Hermann Lage
  • Harish C Joshi
چکیده

A significant impediment to the success of cancer chemotherapy is multidrug resistance (MDR). A typical form of MDR is attributable to the overexpression of membrane transport proteins, such as P-glycoprotein, resulting in an increased drug efflux. In this study, we show that adenovirus-mediated enhancement of the c-Jun NH2-terminal kinase (JNK) reduces the level of P-glycoprotein in a dose- and time-dependent manner. Protein turnover assay shows that the decrease of P-glycoprotein is independent of its protein stability. Instead, this occurs primarily at the mRNA level, as revealed by reverse transcription-PCR analysis. We find that P-glycoprotein down-regulation requires the catalytic activity of JNK and is mediated by the c-Jun transcription factor, as either pharmacologic inhibition of JNK activity or dominant-negative suppression of c-Jun remarkably abolishes the ability of JNK to down-regulate P-glycoprotein. In addition, electrophoretic mobility shift assay reveals that adenoviral JNK increases the activator protein binding activity of the mdr1 gene in the MDR cells. We further show that the decrease of P-glycoprotein level is associated with a significant increase in intracellular drug accumulation and dramatically enhances the sensitivity of MDR cancer cells to chemotherapeutic agents. Our study provides the first direct evidence that enhancement of the JNK pathway down-regulates P-glycoprotein and reverses P-glycoprotein-mediated MDR in cancer cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-treatment by docetaxel and vinblastine breaks down P-glycoprotein mediated chemo-resistance

Objective(s): Chemoresistance remains the main causes of treatment failure and mortality in cancer patients. There is an urgent need to investigate novel approaches to improve current therapeutic modalities and increase cancer patients' survival. Induction of drug efflux due to overexpression of                  P-glycoproteins is considered as an important leading cause of multidrug resistance...

متن کامل

CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line

Objective(s): Multidrug resistance (MDR) is a major obstacle in the successful chemotherapy of ovarian cancer. Inhibition of P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC) transporters, is a well-known strategy to overcome MDR in cancer. The aim of this study was to investigate the efficiency and ability of CRISPR/Cas9 genome editing technology to knockdown ABCB1 gene expression ...

متن کامل

Down-regulation of the P-glycoprotein relevant for multidrug resistance by intracellular acidification through the crosstalk of MAPK signaling pathways.

In our previous study, we have found that the tumor multidrug resistance mediated by P-glycoprotein could be reversed by sustained intracellular acidification through down-regulating the multidrug resistance gene 1 mRNA and P-glycoprotein expression. However, the molecular events linking the intracellular acidification and the regulation of P-glycoprotein remain unclear. In the present study, t...

متن کامل

The Reversal Effects of 3-Bromopyruvate on Multidrug Resistance In Vitro and In Vivo Derived from Human Breast MCF-7/ADR Cells

PURPOSE P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in ...

متن کامل

Increased JNK1 Signaling Pathway Is Responsible for ABCG2-Mediated Multidrug Resistance in Human Colon Cancer

Multidrug resistance remains a major obstacle to effective chemotherapy of colon cancer. ABCG2, as a half-transporter of the G subfamily of ATP-binding cassette transporter genes (ABC transporters), is known to play a crucial role in multidrug resistance. However, the molecular mechanism of controlling ABCG2 expression in drug resistance of colon cancer is unclear and scarcely reported. In the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 66 1  شماره 

صفحات  -

تاریخ انتشار 2006